Back to code sutra Archive
Efficient Conditional Cumulation with Pandas
The Challenge
Actuarial models often require calculating cumulative values (e.g., policy duration, claim count in a period) that reset based on specific events (e.g., policy renewal, claim payment). Using explicit Python loops for such conditional resets on large datasets is computationally expensive and slow.
The Sutra Snippet
python
import pandas as pd
# Sample data mimicking policy events with renewals
df = pd.DataFrame({
'PolicyID': ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C'],
'EventDate': pd.to_datetime([
'2020-01-01', '2020-07-01', '2021-01-01', '2021-07-01',
'2019-03-01', '2020-03-01', '2020-09-01',
'2022-01-01', '2022-06-01', '2023-01-01'
]),
'IsRenewalEvent': [True, False, True, False, True, True, False, True, False, True] # True marks a reset point
})
# Ensure data is sorted for correct cumulative calculation within each policy
df = df.sort_values(by=['PolicyID', 'EventDate']).reset_index(drop=True)
# Step 1: Create a 'renewal group' identifier.
# This increments each time 'IsRenewalEvent' is True within each PolicyID,
# effectively grouping rows belonging to the same policy term.
df['RenewalGroup'] = df.groupby('PolicyID')['IsRenewalEvent'].cumsum()
# Step 2: Calculate the desired cumulative counter (e.g., 'PolicyYearInTerm')
# within each unique (PolicyID, RenewalGroup) combination.
df['PolicyYearInTerm'] = df.groupby(['PolicyID', 'RenewalGroup']).cumcount() + 1
# Resulting DataFrame snippet:
# PolicyID EventDate IsRenewalEvent RenewalGroup PolicyYearInTerm
# 0 A 2020-01-01 True 1 1
# 1 A 2020-07-01 False 1 2
# 2 A 2021-01-01 True 2 1
# 3 A 2021-07-01 False 2 2
# 4 B 2019-03-01 True 1 1
# 5 B 2020-03-01 True 2 1
# 6 B 2020-09-01 False 2 2
# ...
PRO
Efficiency Gain
This vectorized Pandas approach leverages highly optimized C routines for `groupby()` and `cumsum()`, delivering significant performance improvements over explicit Python loops, especially on large actuarial datasets, by avoiding row-by-row iteration.